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Abstract This paper reports preliminary results on a new area of application of quantum
structures, motivated by a reading of the 2004 monograph Reasoning in Quantum Theory.
Ethnographers often describe a particular culture by describing rules of social relations that
they assert characterize that culture. Viable cultures exist over periods of time, that is, over
sequences of “generations”. To embody this, we define a suitable set of objects and relations,
and a structure on which cultural rules act as “operators” on a set of “configurations” on
generations. This yields an MV-algebra of those operators. This implies that culture theory
might be studied as an example of the theory of quantum structures.

Keywords Quantum structures · MV-algebra · GDP · Cultural theory · Operators for
cultural rules · Quantum logic · Cultural rules · Mathematical anthropology

Introduction

It has been known for half a century that certain cultural rules lend themselves to operator
representations [15, 17, 18, 20, 21]. But despite wide use in ethnography of the objects here
called “regular structures”1 the only predictive theory using those objects is the author’s

1For an excellent example see Gould [11].
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previous work2 showing that certain cultural rules can be represented by regular structures,
whose properties successfully predict empirical population measures based on the structure
of the rule alone. That this is a form of reasoning found in study of quantum structures
became apparent upon a reading of the 2004 text Reasoning in Quantum Theory [9]. But
to show that may be true requires a restatement of the foundations of culture theory. The
present paper is the first result of that effort.3

1 Basic Sets and Relations

While definitions are general, the reader may imagine application of these objects to an
evolving system (perhaps a particular biological species, or specific cultural group), consist-
ing of a “population” P, composed of individual members b, c, etc., organized into disjoint
subsets G called “generations”, in turn organized into sequences by relations called “de-
scent” denoted “D”, while within particular generations may be found certain graphs called
“configurations” composed of relations “M” denoting “marriage”, and “B” for “siBships”
(sets of individuals in a given G with common parents). We write #H for the number of
elements in a set H , and write “:=” to define that the symbol on the left of “:=” means
the object on the right. We use the symbol B to represent a particular sibship of P, i.e.,
B := {c ∈ P | c ∈ bB)} for some fixed b ∈ P. We use the symbol M to represent a particular
marriage of P, i.e., M := {c ∈ P | c ∈ bM)} for some fixed b ∈ P.

Definition 1 An evolutionary structure S is a quintuple (P,R,D,B,M) where P is a non-
empty set, R is a non-empty set, and D, B , and M are binary relations on P satisfying the
following:

(1) D is totally non-symmetric and totally non-reflexive;
(2) If bDc and there exists no d ∈ P, d �= b, c for which bDd and dDc, then c is a parent

of b and b is an offspring of c;
(3) If b, c, d ∈ P, and both bDd and cDd then bBc;
(4) M is transitive and symmetric;
(5) If bMc and c is a parent of d , then b is a parent of d ; thus
(6) #bM ≤ 2 for all b ∈ P.

The result of Definition 1(6) is that marriage is “monogamous” between any pair of
“married” individuals. For convenience we shall denote also that if bDc and c is a parent
of b, then we can also write with the same meaning, cD−1b. Note that D imposes a partition
on P, and that bBc iff there exists a d ∈ P such that bD−1d and cD−1d .

Given a subset G of P, we say that a relation Z respects G in case, for all b ∈ G, bZ is a
subset of G. Given a subset G of P, we say that a pair of relations Z,W splits G in case, for
all b ∈ G, bZ ∩ bW is never a subset of G.

Definition 2 Henceforth we assume that S = (P,R,D,B,M) is an evolutionary structure
that has a set of (discrete) generations, with the index set T of integers

� = {Gt | t ∈ T ,G
t ⊆ P}

satisfying the following properties:

2Ballonoff [1–5, 6, Chap. 4, 7]. Selected texts of [6] are available on-line at http://www.BallonoffConsulting.
com/?PG=publications.
3Examples and more extended discussions may be found in [8].
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(1) M and B respect each G
t ∈ �;

(2) The pairs D,B and D,M split each G
t ∈ �;

(3) If b, c ∈ P, G
t ∈ �, b ∈ G

t , and c is a parent of b then c ∈ G
t−1;

(4) � is a partition of P, that is,
⋃

t G
t = P for t ∈ T , and G

t ∩ G
t = ∅ for i �= j , i, j ∈ T .

Let S = (P,R,D,B,M) be an evolutionary structure, with set of generations �, let T
be the time index of S, let b, c, d ∈ P, let G

t ∈ � be a generation of �, and let c be a parent
of b. Then bDc. If c is a parent of b, and d is a parent of c, and if b ∈ G

t , then all of bDc,
bDd , c ∈ G

t−1 and d ∈ G
t−2. If b ∈ G

t and bBc then c ∈ G
t , and if bMd then also d ∈ G

t .
Thus given an evolutionary structure S = (P,R,D,B,M) the set � = {Gt | t ∈ T } is the
indexed set of generations G

t induced on P by D. We thus also refer to such a � as a descent
sequence of S, or simply a descent sequence.

Definition 3 Let S = (P,R,D,B,M) be an evolutionary structure with descent sequence
� = {Gt | t ∈ T }, then for G

t ∈ � define the sets:

M
t := {M | M ⊆ G

t } the set of all marriages in the t th generation of S;
B

t := {B | B ⊆ G
t } the set of all sibships in the t th generation of S;

M := ⋃
M

t , over t ∈ T , the set of all marriages in the evolutionary structure S;
B := ⋃

B
t , over t ∈ T , the set of all sibships in the evolutionary structure S.

Definition 4 Let S = (P,R,D,B,M) be an evolutionary structure, let � = {. . . ,G
t−1,G

t ,

G
t+1, . . .} be a descent sequence of S. Let M

t and B
t be sets defined on � as in Definition 3.

Then for G
t ∈ � let γ t := #G

t , and let βt := #B
t , and let μt := #M

t .

The concepts “split” and “respect” induce a generational coherence of cells: they assure
that the cells B each occur in only one generation. That the subsets M each occur in only
one generation, and that if M ⊂ P, B ⊂ P and M contains the parents of the individuals in B,
then the members of M and B are not in the same generation.

2 Forward Sequences and Subsequences

For each evolutionary structure S, Definition 1 does not require that there necessarily exists
a c ∈ P such that bDc. If we require ∀b ∈ P ∃c ∈ P and bDc, then if t ∈ T , then necessarily
T is infinite in the “backward” direction. While life has existed for a very large number of
generations, it’s history is not, to present knowledge, infinite in the backward direction, and
is only conditionally infinite in the forward direction; thus see Definition 5(1) and 5(2), and
the discussion of “viable” sequences in Sect. 7 below. Also, we can imagine that a descent
sequence is itself composed of “parallel” sets of non-interacting “(sub)sequences” for at
least finite numbers of generations, motivating below Definition 5(3) through 5(5).

Definition 5 Let S = (P,R,D,B,M) be an evolutionary structure, with descent se-
quence �, time index set T , and let b ∈ P.

(1) If there exists a t ∈ T such that there exists a non-empty G
t ∈ � but G

t−1 /∈ � then
such D is a forward descent sequence of S, or simply a forward descent sequence, if S

is understood.
(2) If for every t ∈ T there exists a non-empty G

t ∈ � for which also G
t−1 ∈ � then such

� is a complete descent sequence of S.
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(3) Let �G and �H be forward descent sequences of S, and let �G ∩�H = ∅. Then �G and
�H are called independent descent sequences of S, and �G is said to be independent
of �H.

(4) Let �G = {Gt | t ∈ T G} be a (forward or complete) descent sequence of S. Let �H =
{Ht | t ∈ T H} be a forward descent sequence of S, let P

∗ := ⋃
t G

t , t ∈ T G. If for every
H

t ∈ �H and every b ∈ H
t both b ∈ P

∗ and there exists a c ∈ P
∗ such that bDc, then �H

is a subsequence of �G.
(5) Let �G = {Gt | t ∈ T G} be a (forward or complete) descent sequence of S, let �H =

{Ht | t ∈ T H} let �J = {Jt | t ∈ T J,J
t ⊂ P} be disjoint subsequences of �G. Then �H

and �G are independent subsequences of S. The sets T G and T H are called the local
time index of �G and �H respectively.

In the below, when we use the phrase “descent sequence” with no other qualifier, it
means “forward descent sequence”. Each evolutionary structure S has only one descent se-
quence �. Thus, in adding independent descent (sub)sequences we are adding disjoint sub-
sets of the generations of a common descent sequence of an evolutionary structure S. Note
that any subset of a particular generation G

t is itself an independent descent subsequence,
relative to the rest of that particular generation G

t ; this enables us to perform addition of
such subsets, and of the configurations on them.

An evolutionary structure S has a complete genealogy if for every b, c ∈ P it is possible
to determine whether bBc is true or not true. For this paper we assume all evolutionary
structures S have a complete genealogy.4 Note that since the cells of B are disjoint, that
is, since each b ∈ P belongs to only one B ∈ B then the sets B ∈ B partition P. Since B

respects P, then B splits P, and if bBc and b ∈ G
t ⊆ P, then also c ∈ G

t . M also respects
and thus splits P, but, despite that the sets M are disjoint, the sets M ∈ M partition P iff
every b ∈ P has at least one offspring. This may occur but nothing in the axiomatic structure
assures it. Thus see also discussion of “viable” sequences in Sect. 7.

3 Descent Map Definition

Definition 6 Let S = (P,R,D,B,M) be an evolutionary structure with time index set T
and descent sequence �. Then let

D : B → M

be the map from the subsets B ∈ B of sibships of P onto the reproducing subsets M ∈ M of
individuals in P, associating with each sibship B ∈ B the set M ∈ M that is ascribed as the
parents of the individuals b ∈ B. Call D the descent map (“descendant of” map) on P.

Let G
t ,G

t−1 ∈ �, let B t be the set of all sibships B ∈ G
t , and let Mt−1 be the set of all

reproducing marriages M ∈ G
t−1. The mapping D

t :B t → Mt−1 is onto since Mt−1 is the

4This implies that there may be b ∈ P and d /∈ P for which bDd . That is, the objects in the population under
study may have initially evolved from some other object, not in that population. By the current definition we
avoid the necessity to resolve issues of fundamental cosmology and biological evolution in the present paper.
Eventually culture theory shall have to deal explicitly with issues of origin. Thus, it is probably more than
coincidental that the notion “causal set” as used in the literature on cosmology, imposes a partial order similar
to our descent sequences, and like here, deals with non-reproductive objects by defining them as “bystanders”
and omitting them from certain statistics. See also footnote 7 below.
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set of all sets of parents that have at least one descendant (that it, we ignore non-reproducing
sets M.

Lemma 1 Let S = (P,R,D,B,M) be an evolutionary structure with descent sequence �,
and let D : B → M be the descent map on �. Then the density function of possible sizes of
the sets B ∈ B t onto the sets M ∈ Mt−1, and thus also of sizes of the sets B ∈ B t onto
M ∈ Mt−1, is given by the Stirling Number of the Second Kind.

Proof Because D is a surjection (from sets B ∈ B
t onto M ∈ M

t−1), this proof is found in
many texts in the standard literature on combinatorics of surjections.5 �

Lemma 1 is an important result. It allows us to compute, inter alia, a density function
on the possible sizes of the sets B ∈ B

t of a given generation, given the number of repro-
ducing sets M ∈ M

t−1 of the previous generation, which number in turn may depend on
the marriage rule. That is, given certain purely “structural” knowledge, we can compute a
predicted numerical value of an “observable”, such as “average family size”. Therefore,
our seemingly simple model implies a very strongly predictive tool for empirical mea-
sures on populations, determined by particular rules. This theory is laid out in Ballonoff
[1, 3, 4, 8].

Axiom We require that D preserves the relations D, that is, D(B) = M preserves D iff for
b, c ∈ P, if cD−1b, b ∈ B ∈ B then c ∈ M ∈ M. And thus also for given t ∈ T , D(B) = M
iff b, c ∈ P, G

t ,G
t−1 ∈ �, b ∈ G

t , c ∈ G
t−1, cD−1b, b ∈ B ∈ B

t and c ∈ M ∈ M
t−1.

Therefore D simply collects all of the relationships D between two generations, and maps
them all simultaneously. Because in an evolutionary structure with a complete genealogy,
the sets B ∈ B partition P, it is also true that each reproducing set M ∈ M has mapped onto
it exactly one B ∈ B, so D is 1–1. So we can create an inverse map D

−1 : M → B called
the ancestor map (“ancestor of” map) on P, which we also require to preserve D, and thus
which is also 1–1 and onto B. Therefore also all of D, D

−1 and their specific forms D
t and

(Dt )−1, are bijections.

4 Vectors of Configurations

This section provides an intuitive description of configurations on generations and the set of
vectors representing configurations. A general algebraic treatment is warranted, but we can
go quite far here using the simple “regular structures”, described below, which are easily
illustrated by examples. The term concrete configuration shall mean the pair Ct = (Bt ,M

t )

consisting of the partition B
t and the sets M

t on G
t . Thus, the B

t and M
t also identify sets

of relationships or graphs on the individuals in G
t . Because the elements of M

t and B
t are

just subsets of G
t , for any two generations G

i ,G
j ∈ �, we can also study whether the graph

of M
i and B

i on G
i is isomorphic to that of M

j and B
j on G

j .6

5For proofs that a surjection requires the Stirling Number of the Second Kind as its density function, see
for example van Lint, J.H. and R.M. Wilson [19], p. 106; Grimaldi, R.P. [12], p. 178; and Peter Hilton, Jean
Peterson and Jurgen Stiger [14].
6See for example DeMeur and Gottscheiner [10].
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We define a notation for certain isomorphism classes called regular structures. To depict
these use a dot to represent an individual, use a circle around two dots (say, b and c) to show
that bMc, and use a line between pairs two dots (say, d, e) to show that they are of sibs
in the same sibship dBe. When these form simple closed cycles “sibship-marriage-sibship-
marriage . . . ” closing back to the first listed sibship, we can give them names M1, M2,
M3, etc. according to the number of M subsets in each figure, and identifying only closed
(cyclic) figures, of disjoint B-sets and disjoint M-sets. For example:

are the regular structures with 2, 3, 4 and 5 M-sets, represented by the circles.7

Using these structures, if they are all that is present, we can represent the isomorphism
classes of a particular concrete configuration Ct as a configuration vector

C = (m0,m1,m2, . . . ,mj , . . .)

where the coefficient mj is the number of elements of isomorphism type Mj in the concrete
configuration. We note that for all j , mj ∈ R+, the set of non-negative real numbers; more
specifically in the present paper all mj ∈ N+, the non-negative integers.8

Note that each C is an n-tuple describing the isomorphism class of a concrete configura-
tion Ct = (Bt ,M

t ) on some subset G
t of P. When we mean the concrete configuration we

shall use the form Ct . The ordered sequence consisting of just the coefficients mj is suffi-
cient to uniquely describe any particular isomorphism class represented by such “vector”.
The configuration consisting of no relations is the vector (0,0, . . .). When no ambiguity
arises we denote this vector as “(0)” or simply “0”.

5 Algebraic Operations on Configurations

Assume a non-empty descent sequence � = {. . . ,G
t−1,G

t ,G
t+1, . . .} of an evolutionary

structure S. We now discuss addition of two independent subsequences, whose union in a
particular generation is G

t . That is, for disjoint subsets G
′,G

′′ ⊂ G
t we will define addition

of configurations to be the result of the union G
′ ∪ G

′′. Thus G
′ + G

′′ means a set that takes
the union of all of the individuals of the two sets, and also preserves all of the relations
on G

′ and on G
′′. So on the set G

′ ∪ G
′′ of disjoint sets G

′ and G
′′ we also find all of the

configurational elements on G
′ as well as on G

′′.
As a numerical example, if C′ + C′′ are on disjoint subsets G

′ and G
′′ of a generation

G
t , and C′ = (0,0,2(M2),0,0, . . .) and C′′ = (0,0,3(M2),0,0, . . .), then the result of C′ +

C′′ = (0,0,5(M2),0,0, . . .). Without listing the basis objects, we have:

C′ + C′′ = (0,0,2,0,0, . . .) + (0,0,3,0,0, . . .) = (0,0,5,0,0, . . .).

7Not illustrated and not otherwise used in this paper, is the M0 configuration, which would be a dot with
a circle around it. Such configuration could represent for example, a single cellular organism that requires
no “partner” to reproduce. As that possibility will also be exploited in other papers, we leave the vector
position for the M0 configuration as the first listed position in our vectors, for completeness. M1 would be a
“marriage” of two individuals, shown as two dots in a circle with no other structure illustrated.
8We prefer to use R+ since in future papers we expect to develop a “normalization” of certain of the sets
below, which will require real coefficients other than integers.
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Thus let C,D,E ∈ C be configurations respectively on disjoint non-empty G
′,G

′′,G
′′′ ⊆

G
t of a given descent sequence �. Since for all j , mj ∈ R+, with respect to arithmetic

addition the set C of isomorphism classes of configurations on disjoint subsets of G
t thus

is: closed, since if C,D ∈ C, then C + D ∈ C, by ordinary arithmetic addition; commutative:
since ordinary arithmetic addition of non-negative numbers commutes, thus C+D = D+C;
associative: since by ordinary arithmetic addition at each coefficient (C+D)+E = C+(D+
E); and an additive identity exists—denote by 0 the vector (0,0,0, . . .) in which mj = 0
for all j so C + 0 = 0 + C = C. Note, C is also closed under scalar multiplication by the
integers.9 Let nmi = mi + mi + · · · , performed n times. Then if C ∈ C is multiplied by a
scalar n; nC ∈ C. And if C,D ∈ C then n(C + D) = (nC + nD) = nC + nD which is just
addition of vectors in C so the result is also in C. Denote the algebra just defined on the set
C with operation “+” and zero element 0, (C,+,0).

Now we ask, is there an operation “−” such that for any C ∈ C, C − C = 0, and such
that the operation C − D is defined even when C �= D. Since “subtraction” of configurations
“removes” part of the structure on a generation, when we “subtract” C′ from C we can only
take from C as much as is in it. Thus if, at some j , mj < m′

j then mj −m′
j ≥ 0. For example

at position j = 2 if C has 2 of the Mj configurational elements, then mj = 2. And if C′ has
3 of the Mj elements then m′

j = 3. Thus mj − m′
j = 2 − 3 = 0, not 2 − 3 = −1. However,

if we instead subtract C′ − C then at the j position mj ◦ m′
j = max(0,mj − m′

j ), we have
m′

j − mj = 3 − 2 = 1. Thus following Hedlikova and Pulmannova [13], Definitions 1.1
and 2.1:

Definition 7 Let (X,≤) be a poset, with a smallest element 0, on which exists a partial
binary operation ◦ such that for x, y ∈ X if x ◦ y is defined, then x ◦ y is called a difference
on X iff, for z, y, z ∈ X the following are satisfied:

(D1) if x ≤ y then y ◦ x ≤ y and y ◦ (y ◦ x) = x;
(D2) if x ≤ y ≤ z then z ◦ y ≤ z ◦ x and (z ◦ x) ◦ (z ◦ y) = y ◦ x; and

(C) if x ≤ y, z and y ◦ x = z ◦ x then y = z.

The system (X,≤,0,◦) is called a generalized difference poset (GDP).

Definition 8 Let S be an evolutionary structure with descent sequence �. Let G
t ∈ �,

let G and G
′ be disjoint subsets of G

t . Let C and C′ be the configurations on G and G
′

respectively. Let the coefficients of C and C′ at position j be mj and m′
j , and let a, b and

c be possible values of mj and m′
j . For each j , define the form C ◦ C′ to be value at the

j th coefficient mj ◦ m′
j = max(0,mj − m′

j ) such that if a + b = c, then necessarily all of:
(i) a ≤ c; (ii) b ≤ c; and (iii) if b ≥ a then a ◦ b = 0.

Lemma 2 Let C be the set of configurations, and let ≤ and ◦ be the operation defined in
Definition 8. Then the system (C,≤,0,◦) is a GDP.

Proof We know 0 ∈ C. For C ∈ C at all positions j , mj ∈ R+, and from Hedlikova and
Pulmannova [13], the set R+ with subtraction x ◦ y ′ = max(0, x − y) is a GDP. It is evident
that the operation ≤ of Definition 8 forms a partial order. �

Write a GDP thus defined as (C,−,0), or (Cj ,−,0) for just the j th position of the vector
corresponding to regular structure Mj .

9Because we are for now dealing only with regular structures, and finite generations, it is sufficient that the
scalar multiplication be integers.
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6 Properties of the Rule Algebra

A rule is any statement in natural, logical or mathematical language which determines how
a relationship on a given generation may form. For example, a marriage rule is a statement
that says how the M relation may, or may not, form. Even when a rule is not explicitly
stated in terns of configurations, it may and often will affect how configurations may form.
For example, the rule “one may not marry themselves, nor a person who is a sibling of
themselves, but must marry within the same generation”, means that M2 is the smallest
structure which can “reproduce itself” in one generation. Thus while reserving for other
papers a more general treatment of rules, we here concentrate on the effects of rules on
formation of configurations; that is, we study rules as “operators” on C.

Definition 13 Let S = (P,R,D,B,M) be an evolutionary structure with time index set T
and descent sequence � = {Gt | t ∈ T }. Let C,D ∈ C. Let R ∈ R be a rule and let R : C → C

be the rule operator for R on C × C. Let R := {R | R ∈ R, R is a rule operator for R} be the
set of rule operators of S.

(1) Let:
(i) RC,D = 1 iff R allows (or requires) a transition from C to D.

(ii) RC,D = 0 iff R does not allow a transition from C to D.
(2) Let

RC := {D | D ∈ C and RC,D = 1}
and call RC the set of accessible configurations under R starting from C.

(3) Let

C
R := {RC | R ∈ R,R ∈ R the operators for R ∈ R,C ∈ C}

be the set of sets of accessible configurations under any R ∈ R starting from any C ∈ C.

Write R2C = R(RC) to mean the result of application of the operator R for the rule R
for two successive generations starting from the configuration C, that is R2C = RRC. And
generically RkC for the result of application of R for k successive steps starting from C.
Write RSC = R(SC) for the application of rule S to C followed by the application of rule R
to the result, which then also allows forms like RkSj C, with the obvious meaning. We shall
call the form “RS” the “sequential application” of rules. Only in particular cases is RC a
unique outcome. In such case we write RC = D.

Following Definition 13 we can also compute the set R(SC) = RSC of possible outcomes
of sequential application of rule S to configuration C followed by rule R as follows.

Definition 14 Under the same premises as Definition 13,

RSC :=
⋃

D

SD, D ∈ RC.

That is, for D,F, . . . ∈ RC, then SRC = SD ∪ SF ∪ · · · .

Definition 15 Let R be a set of rules, let R,S ∈ R, let R = {R | R ∈ R and R is the operator
for R} be the set of rule operators for R, let C be a set of configurations, and let C ∈ C.
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Let RC be the set of configurations accessible from C under R, and let SC be the set of
accessible configurations under S. Let ≤ be a relation such that:

RC ≤ SC iff RC ⊆ SC

Lemma 3 Let ≤ be the relation defined in Definition 15. Let C
R be the set of all sets of

accessible configurations per Definition 13.2. Then (CR,≤,0,1) where 1 := {C | C ∈ C}
and 0 := ∅ is a bounded poset.

Proof Since ≤ is a partial order, then (CR,≤) is a poset. Let C ∈ C and let R ∈ R be a
rule that allows no transitions following C. Then C

t
RC = ∅ so ∅ = 0 ∈ C

R, and clearly for
all x ∈ C

R, ∅ ≤ x; and let S ∈ R be a rule that admits any configuration to follow C, so
RC = C = 1, and since any set RC ∈ C

R ⊆ C then for all RC, RC ≤ C and we have a
bounded poset. �

Definition 16 Let C be a finite set of configurations, including the configuration 0. Let
C,D ∈ C and then define aC,D such that aC,D = 1 iff RC,D = 1, and aC,D = 0 iff RC,D = 0. Let
ARC be an n-tuple that lists the 0 or 1 values of aC,D given R for all D ∈ C. Let A = {ARC |
C ∈ C, R ∈ R} be the set of all such n-tuples. If ARC ∈ A call ARC an accessibility indicator.

We assume that an arbitrary “standard order” is fixed for the sequence of listing entries
in an ARC n-tuple. Then for every configuration C ∈ C and for every rule R ∈ R there is
a 1–1 correspondence between RC and each ARC. Let ARC be the accessibility indicator
corresponding to the set RC such that aC,D = 1 iff RC,D = 1 and aC,D = 0 iff RC,D = 0.

Lemma 4 Let C be a set of configurations and let C,D,E ∈ C. Let R be a rule acting on C.
Let ARC,ARE ∈ A. Define

ARC ≤ ARE iff for all D ∈ C, aC,D ≤ aE,D

Then

RC ≤ SC iff ARC ≤ ASC.

The set A together with ≤ has a “maximal” accessibility indicator 1 = (1,1,1, . . .) cor-
responding to RC = C such that for all ARC ∈ A, for all C ∈ C, ARC ≤ 1, and there is a
“minimal” accessibility indicator 0 = (0,0,0, . . .) corresponding to RC = ∅ such that for
all ARC ∈ A, 0 ≤ ARC, and both 0,1 ∈ A. Thus, (A,≤,0,1) is a bounded poset.

Proof Obvious given the previous Lemma 3. �

Definition 17 Call a bounded poset (A,≤,0,1) constructed as in Lemma 4 an accessibility
structure, also denoted simply as A.

We now have a choice of paths of development. Following Sect. 5 we could proceed to
show that since the sets RC are composed of particular objects, that we can define a partial
binary operation of “subtraction” among them and derive a GDP of those sets under ac-
tion of differences of operators. This would lead to application of results in Hedlikova and
Pulmannova [13]. However, here we emphasize the presence in culture theory of four oper-
ations on rules, namely, simultaneous application, sequential application, complementation,
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and “subtraction” or removal of conditions. Thus below we first derive a BCK-algebra for
“substraction”, and from this derive the remaining three as an MV-algebra.

Definition 18 Let C be a set of configurations, Define subtraction of two rules R,S ∈ R as:

(R ◦ S)C,D = 1 iff for D ∈ C, RC,D ∈ RC and SC,D /∈ SC else (R ◦ S)C,D = 0.

Let R and S be the operators for rules R,S ∈ R, and let C ∈ C. Define subtraction R − S of
rule operators as:

R ◦ S := (R − S)C := {D | R,S ∈ R,C,D ∈ C, (R ◦ S)C,D = 1}.

Definition 19 A BCK-algebra10 is an algebra on a non-empty set A with an operation ∗ and
an element 0, such that for any x, y, z ∈ A then:

I. ((x∗y)∗(x∗z))∗(z∗y) = 0.
II. (x∗(x∗y))∗y = 0.

III. x∗x = 0.
IV. 0∗x = 0.
V. x∗y = 0 and y∗x = 0 imply that x = y.

Theorem 1 Let R be a set of rules containing the empty rule, and let R ∈ R. Then (CR,◦,0)

when 0 = ∅, is a BCK-algebra.

Proof Obvious, since the definition of ◦ is as the set theoretical difference. �

Thus with respect to “subtraction” ◦, R induces a BCK-algebra (CR,◦,0) of rule opera-
tors on the basis of the GDP (C,−,0) of configuration vectors.

Note that it is possible, indeed likely in practice, that rules can be stated as simultaneous
application of a set of independent rules. For example, the common marriage rule “one may
not marry anyone who is a first cousin or closer relative” but also “one must marry within
the same generation”. Thus it is useful to study simultaneous application of independently
stated rules.

Definition 20 Define simultaneous application of rules R,S ∈ R to be

(R � S)C,D = 1 iff for D ∈ C, RC,D = 1 and SC,D = 1 else (R � S)C,D = 0.

Let R and S be the operators for rules R,S ∈ R, and let C ∈ C. Then define:

R � S = {D | R,S ∈ R,C,D ∈ C, and (R � S)C,D = 1}.

Note therefore that R � R = R, and R � S = S � R, and (R � S) � Q = R � (S � Q).
Since (CR,◦,0) is a BCK-algebra, we denote the algebra that also uses “�” and specifying
the maximal element 1, as (CR,◦,�,0,1), and call this an operator algebra.

Definition 21 Following Mundici [16], define that if A = (B,+,•,∼,0,1) is an algebra
of type 〈2,2,1,0,0〉, satisfying:

10The definition of BCK-algebra is from Young and Dudak [22].
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(i) (x + y) + z = x + (y + z);
(ii) x + 0 = x;

(iii) x + y = y + x;
(iv) x + 1 = 1;
(v) x∼∼ = x;

(vi) 0∼ = 1;
(vii) x + x∼ = 1;

(viii) (x∼ + y)∼ + y =∼ (x + y∼) + x;
(ix) x • y =∼ (x∼ + y∼)

then A is an MV-algebra.

Theorem 2 Let (CR,◦,�,0,1) be an operator algebra. Let:

∼ := RC∼ = 1 ◦ RC;
⊕ := RC ⊕ RD = {E | C,D,E ∈ C, RCE = 1 or RDE = 1, or both RCE = 1 and RDE = 1};
• := RC • RD = {E | C,D,E ∈ C, RCE = 1 and RDE = 1}, and let
A := (CR,⊕,•,∼ ,0,1).

Then A is an MV-algebra.

Proof Mundici [16] in Lemma 4 of that paper demonstrated that if (H , ∗,0,1) is a BCK-
algebra, then for x, y ∈ H , if

D1: x∼ = (1∗x) and D2: x + y = (x∼∗y) and D3: x • y =∼ (x∼ + y∼)∼

then H = (H ,+,•,∼,0,1) is an MV-algebra. An operator algebra (CR,◦,�,0,1) is a
BCK-algebra of the sort required. The values of x and y in the definitions of the objects
RC ∈ C

R are simply the values 0 or 1. Thus, by substitution of the four possible pairs of
values into the definition D2 we find that 1 + 1 = 1 + 0 = 0 + 1 = 1 and 0 + 0 = 0; thus
RCE = 1 or RDE = 1, or both RCE = 1 and RDE = 1; which is the definition of ⊕. The pairs of
values for D3 are 1 • 1 = 1, and 1 • 0 = 0 • 1 = 0 • 0 = 0; that is both RCE = 1 and RDE = 1,
which is the definition of �. By substitution of “◦” for “∗”, then ∼ is an operation meeting
D1, ⊕ an operation meeting D2, and • (which is equivalent to � of Definition 20) is an
operation meeting D3. �

Thus substituting for • with � in the MV-algebra, if (CR,◦,�,0,1) is an operator alge-
bra, we can derive the MV-algebra A = (CR,⊕,�,∼,0,1) by Mundici Lemma 4. We next
show that the MV operation ⊕ is equivalent to sequential application of rule operators, such
as the form as SRC.11

Theorem 3 Let S = (P,R,D,B,M) evolutionary structure with time index set T and de-
scent sequence �. Let A be the accessibility structure of S. Let (CR,◦,�,0,1) be an oper-
ator algebra with derived MV-algebra (CR,⊕,�,∼,0,1). Let R ∈ R with operator R ∈ R.
Let SRC = ⋃

D SD, D ∈ CR. Then SRC = ARD ⊕ ARE ⊕ ARF, ⊕· · · for D,E,F, . . . ∈ RC.
(That is, the form SRC is computed by ⊕, given RC.)

11Note, the algebras (R,⊕) and (R,⊕) are each associative since placement of parenthesis around subse-
quences does not affect the result.
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Proof F ∈ (SD ∪ SE) iff (F ∈ SD or F ∈ SE or both). That is, iff (SD,F = 1, or SD,E = 1,
or both SD,E = 1 and SD,F = 1). That is, F ∈ (SD ∪ SE) iff aDF = 1 or aEF = 1, or both
aDF = 1 and aEF = 1. Now, ⊕ implies that 1 ⊕ 1 = 1 ⊕ 0 = 0 ⊕ 1 = 1 and 0 ⊕ 0 = 0. That
is, F ∈ (SD ∪ SE) iff aSD ⊕ aSE = 1 at position F, and this occurs if either or both aDF = 1,
aEF = 1. Thus we can now also write

SRC = ASD ⊕ ASE ⊕ ASF,⊕· · · for D,E,F, . . . ∈ RC. �

Thus, the two important empirical operations “simultaneous application of two rules”
and “sequential application of two rules” are the “natural result” of the MV-algebra
(CR,⊕,�,∼,0,1) derived from the operator algebra (CR,◦,�,0,1), built in turn from
the GDP (C,−,0).

7 Discussion

It has long been the practice of ethnographers to use regular structures to illustrate the struc-
ture of a marriage rule and/or the application of a kinship terminology of a culture, without
realizing the tremendous analytical power they imply. Part of that power must surely be their
relation to the MV-algebra of the rules whose operation they represent. The importance is
illustrated by this simple idea:

Definition 22 A rule R ∈ R is viable on the descent sequence � of the evolutionary structure
S with time index T , iff for all t ∈ T , RC �= ∅. If a rule is viable on a descent sequence we
also say that the descent sequence is viable, and that the evolutionary structure in which the
descent sequence is defined is viable.

A principal purpose of this research is to determine conditions under which a rule, a set
of rules, a descent sequence, and the corresponding evolutionary structure, is viable. If we
define a “history” as the result of application of any sequence of rules (that is, of rule op-
erators), then the existence of viable histories is a fundamental question of many areas of
science.

We also noted that since the descent maps D are surjections we can derive a density
function for that operation. That is significant since this density function then allows com-
putation of the average size of the sibships (B sets) associated with use of a given rule
(“average family size”), and predicts other “demographic” observables. It can be shown [8]
that the “eigenstates” of the descent operator (that is, the “fixed points” of the induced map
D : C → C) predict distinct possible observable rules of cultural systems, in “pure systems”,
and their associated “demographic” statistics, by application of Lemma 1. Linear combina-
tions of pure state characteristics predict statistics of mixed states.12 This therefore also
allows to predict certain effects of cultural change, by use of a commutator of observables
that can be found from properties of rules within the algebras studied in this paper. In short,
cultural theory has many of the properties of a quantum structure. The implications of this
suggestion should be explored.

12See Ballonoff [3, 4, 8].
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